2,110 research outputs found

    Correlated fluorescence quenching and topographic mapping of Light-Harvesting Complex II within surface-assembled aggregates and lipid bilayers

    Get PDF
    Light-Harvesting Complex II (LHCII) is a chlorophyll-protein antenna complex that efficiently absorbs solar energy and transfers electronic excited states to photosystems I and II. Under excess light intensity LHCII can adopt a photoprotective state in which excitation energy is safely dissipated as heat, a process known as Non-Photochemical Quenching (NPQ). In vivo NPQ is triggered by combinatorial factors including transmembrane ΔpH, PsbS protein and LHCII-bound zeaxanthin, leading to dramatically shortened LHCII fluorescence lifetimes. In vitro, LHCII in detergent solution or in proteoliposomes can reversibly adopt an NPQ-like state, via manipulation of detergent/protein ratio, lipid/protein ratio, pH or pressure. Previous spectroscopic investigations revealed changes in exciton dynamics and protein conformation that accompany quenching, however, LHCII-LHCII interactions have not been extensively studied. Here, we correlated fluorescence lifetime imaging microscopy (FLIM) and atomic force microscopy (AFM) of trimeric LHCII adsorbed to mica substrates and manipulated the environment to cause varying degrees of quenching. AFM showed that LHCII self-assembled onto mica forming 2D-aggregates (25–150 nm width). FLIM determined that LHCII in these aggregates were in a quenched state, with much lower fluorescence lifetimes (~0.25 ns) compared to free LHCII in solution (2.2–3.9 ns). LHCII-LHCII interactions were disrupted by thylakoid lipids or phospholipids, leading to intermediate fluorescent lifetimes (0.6–0.9 ns). To our knowledge, this is the first in vitro correlation of nanoscale membrane imaging with LHCII quenching. Our findings suggest that lipids could play a key role in modulating the extent of LHCII-LHCII interactions within the thylakoid membrane and so the propensity for NPQ activation

    Infrared composition of the Large Magellanic Cloud

    Get PDF
    The evolution of galaxies and the history of star formation in the Universe are among the most important topics in today's astrophysics. Especially, the role of small, irregular galaxies in the star-formation history of the Universe is not yet clear. Using the data from the AKARI IRC survey of the Large Magellanic Cloud at 3.2, 7, 11, 15, and 24 {\mu}m wavelengths, i.e., at the mid- and near-infrared, we have constructed a multiwavelength catalog containing data from a cross-correlation with a number of other databases at different wavelengths. We present the separation of different classes of stars in the LMC in color-color, and color-magnitude, diagrams, and analyze their contribution to the total LMC flux, related to point sources at different infrared wavelengths

    Exponential Random Graph Modeling for Complex Brain Networks

    Get PDF
    Exponential random graph models (ERGMs), also known as p* models, have been utilized extensively in the social science literature to study complex networks and how their global structure depends on underlying structural components. However, the literature on their use in biological networks (especially brain networks) has remained sparse. Descriptive models based on a specific feature of the graph (clustering coefficient, degree distribution, etc.) have dominated connectivity research in neuroscience. Corresponding generative models have been developed to reproduce one of these features. However, the complexity inherent in whole-brain network data necessitates the development and use of tools that allow the systematic exploration of several features simultaneously and how they interact to form the global network architecture. ERGMs provide a statistically principled approach to the assessment of how a set of interacting local brain network features gives rise to the global structure. We illustrate the utility of ERGMs for modeling, analyzing, and simulating complex whole-brain networks with network data from normal subjects. We also provide a foundation for the selection of important local features through the implementation and assessment of three selection approaches: a traditional p-value based backward selection approach, an information criterion approach (AIC), and a graphical goodness of fit (GOF) approach. The graphical GOF approach serves as the best method given the scientific interest in being able to capture and reproduce the structure of fitted brain networks

    Melarsoprol cyclodextrin inclusion complexes as promising oral candidates for the treatment of human African trypanosomiasis

    Get PDF
    Human African trypanosomiasis (HAT), or sleeping sickness, results from infection with the protozoan parasites <i>Trypanosoma brucei</i> (<i>T.b.</i>) <i>gambiense</i> or <i>T.b.rhodesiense</i> and is invariably fatal if untreated. There are 60 million people at risk from the disease throughout sub-Saharan Africa. The infection progresses from the haemolymphatic stage where parasites invade the blood, lymphatics and peripheral organs, to the late encephalitic stage where they enter the central nervous system (CNS) to cause serious neurological disease. The trivalent arsenical drug melarsoprol (Arsobal) is the only currently available treatment for CNS-stage <i>T.b.rhodesiense</i> infection. However, it must be administered intravenously due to the presence of propylene glycol solvent and is associated with numerous adverse reactions. A severe post-treatment reactive encephalopathy occurs in about 10% of treated patients, half of whom die. Thus melarsoprol kills 5% of all patients receiving it. Cyclodextrins have been used to improve the solubility and reduce the toxicity of a wide variety of drugs. We therefore investigated two melarsoprol cyclodextrin inclusion complexes; melarsoprol hydroxypropyl-͎-cyclodextrin and melarsoprol randomly-methylated-β-cyclodextrin. We found that these compounds retain trypanocidal properties <i>in vitro</i> and cure CNS-stage murine infections when delivered orally, once per day for 7-days, at a dosage of 0.05 mmol/kg. No overt signs of toxicity were detected. Parasite load within the brain was rapidly reduced following treatment onset and magnetic resonance imaging showed restoration of normal blood-brain barrier integrity on completion of chemotherapy. These findings strongly suggest that complexed melarsoprol could be employed as an oral treatment for CNS-stage HAT, delivering considerable improvements over current parenteral chemotherapy

    Увеличение темпов прироста запасов углеводородов с помощью инновационных технологий на примере Омской области

    Get PDF
    Проведен анализ перспектив нефтегазоносности Омской области на основе данных инновационной технологии квантово-оптической фильтрации космоснимков. Приведены физические принципы технологии квантово-оптической фильтрации. На примере Омской области показана эффективность применения технологии квантово-оптической фильтрации при решении задачи повышения темпов прироста запасов углеводородного сырья

    The chemopreventive polyphenol Curcumin prevents hematogenous breast cancer metastases in immunodeficient mice

    Get PDF
    Dissemination of metastatic cells probably occurs long before diagnosis of the primary tumor. Metastasis during early phases of carcinogenesis in high risk patients is therefore a potential prevention target. The plant polyphenol Curcumin has been proposed for dietary prevention of cancer. We therefore examined its effects on the human breast cancer cell line MDA-MB-231 in vitro and in a mouse metastasis model. Curcumin strongly induces apoptosis in MDA- MB- 231 cells in correlation with reduced activation of the survival pathway NF kappa B, as a consequence of diminished I kappa B and p65 phosphorylation. Curcumin also reduces the expression of major matrix metalloproteinases (MMPs) due to reduced NF kappa B activity and transcriptional downregulation of AP-1. NF kappa B/p65 silencing is sufficient to downregulate c-jun and MMP expression. Reduced NF kappa B/AP-1 activity and MMP expression lead to diminished invasion through a reconstituted basement membrane and to a significantly lower number of lung metastases in immunodeficient mice after intercardiac injection of 231 cells (p=0.0035). 68% of Curcumin treated but only 17% of untreated animals showed no or very few lung metastases, most likely as a consequence of down-regulation of NF kappa B/AP-1 dependent MMP expression and direct apoptotic effects on circulating tumor cells but not on established metastases. Dietary chemoprevention of metastases appears therefore feasible. Copyright (c) 2007 S. Karger AG, Basel

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins
    corecore